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The spatial evolution of the disturbances that lead to boundary-layer transition on a
swept wedge is computed by large-eddy simulations (LES). Stationary and travelling
crossflow-vortex disturbances are generated using steady and random-amplitude suc-
tion and blowing on the wedge. For a fixed initial amplitude of the stationary vortex
and low-amplitude unsteady disturbances, the LES show the evolution of stationary-
dominated crossflow disturbances similar to previous simulations and experiments:
linear amplification is followed by vortex roll-over and doubly inflectional velocity
profiles just prior to transition. A high-frequency secondary instability is associated
with the double inflection points in the velocity profiles. The harmonic modes of the
primary disturbance were found to be amplified, while no energy was found in any
subharmonic mode. The physical phenomena were significantly different when the
stationary and travelling vortices have comparable initial amplitudes: in this case, the
vortex roll-over does not occur and transition is dominated by the travelling-wave
component.

1. Introduction
The state of the three-dimensional boundary-layer flow on the wings and fuselage

of an aircraft determines the viscous drag contribution to the total drag of the aircraft,
which is dependent on the flow state, and can equal 40% to 50% of the total drag
(Arcara, Bartlett & McCullers 1991). A reduction in viscous drag can lead to reduced
fuel expenditures, reduced emission (pollution), reduced aircraft size or enhanced
range, and reduced noise. Laminar flow is preferable to turbulent flow (except in
recovery regions where the pressure-drag penalty of boundary-layer separation is
severe) because the significantly lower skin friction of laminar flow leads to decreased
viscous drag.

Obtaining laminar flow on swept wings, however, requires careful attention to the
design, manufacturing, and operation of the aircraft. Surface waves or irregularities
on the wing can ‘trip’ the boundary layer, and turbulent contamination that results
from wing/fuselage junctures can lead to boundary-layer transition close to the
leading edge of the wing. For long-spanned aircraft, travelling waves can become
unstable along the attachment line (which is located near the leading edge) and
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cause transition there. Several mechanisms may be at play. Itoh (1996) discussed the
existence of a new instability present in regions of large streamline curvature (near
the attachment line of a wing, for instance). As the curvature decreases, however, the
critical Reynolds number for this instability approaches infinity. The region covered
in the present paper has mild streamline curvature and, therefore, the streamline-
curvature instability will have little impact on the flow. Lingwood (1997) has shown
that swept-wedge flow is absolutely unstable in the chordwise direction; the role
of this instability versus the convective instabilities in the transition process is not
currently known. Near the mid-chord region of a wing or when the flow is not strongly
accelerated, two-dimensional transition phenomena are important. Depending on wing
sweep and pressure gradient, a boundary layer can be susceptible to crossflow-vortex
instabilities, which are caused by the inflection point present in the velocity profile
perpendicular to the streamline velocity component within the boundary layer. For
accelerating flows and highly swept wings (> 25◦), these crossflow-vortex instabilities
are unavoidable (without flow control) and can cause transition to occur within a
few percent chord. Significant research has been conducted toward understanding the
linear amplification and nonlinear interaction of crossflow disturbances during the
transition process; crossflow-dominated transition is the focus of this paper.

Many experiments over the last decade have led to increased understanding of
the crossflow-dominated transition problem by highlighting a decreased role of the
Tollmien–Schlichting disturbances, compared with two-dimensional boundary layers.
For example, using a pressure gradient to suppress Tollmien–Schlichting instabilities,
both stationary and travelling crossflow vortices have been observed experimentally by
Arnal, Coustols & Juillen (1984), Bippes & Nitschke-Kowsky (1987), Müller & Bippes
(1988), Dagenhart et al. (1990), Dagenhart (1992), and Reibert et al. (1996). Müller
& Bippes (1988) and Bippes, Müller & Wagner (1991) showed that travelling cross-
flow vortices may have smaller or larger initial energy for low- and high-disturbance
tunnels, respectively, whereas travelling disturbances become very important in high-
disturbance tunnels. For stationary-vortex-dominated flow, Dagenhart et al. (1990)
observed doubly inflectional velocity profiles and a phenomenon called ‘vortex roll-
over’; the inflectional profiles lead to higher-frequency secondary-instability travelling
modes (Kohama, Saric & Hoos 1991). Experiments also showed that unsteady distur-
bances, especially the secondary-instability modes, play an important role in driving
the laminar flow to transition and turbulence (Müller & Bippes 1988). More recently,
Lerche (1996) studied the transition process on a swept wedge using an oscillating
membrane to initiate travelling modes, and surface roughness to introduce stationary
modes. A high-frequency (2 kHz) instability was detected about midway through
the boundary layer in the region of vortex saturation. Similar to previous studies,
Lerche (1996) looked at the phase relationship between the high-frequency mode and
the primary mode to conclude that the high-frequency secondary mode is linked to
the mean flow inflection points and negative local mean velocities. Finally, Deyhle
& Bippes (1996) studied the impact of environmental conditions on the stationary
and travelling instability development in the wind tunnel. They note that the initial
amplitudes of the stationary vortices depend on the surface conditions, while the
initial amplitudes of the travelling modes depend on both the surface conditions and
unsteady free-stream conditions. It was demonstrated that sound does not affect the
formation of crossflow disturbances in the three-dimensional boundary layer.

Using linear stability theory to compute the amplification of crossflow disturbances,
Dallman & Bieler (1987) showed that travelling vortices are more unstable than
stationary crossflow vortices. Fischer & Dallman (1988) and Balachandar, Streett &
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Malik (1990) used secondary instability theory to predict the growth of the secondary
modes arising from the influence of the primary crossflow vortex instability on the
base flow. As the disturbances become finite in amplitude, and mean-flow distortion
occurs, however, the linear and quasi-linear theories are no longer valid.

Bertolotti & Crouch (1992), Malik, Li & Chang (1994), and Haynes & Reed (1996)
have used the parabolized stability equations (PSE) to predict the nonlinear features
of transition on swept wings. Bertolotti & Crouch (1992) showed results from the
coupling of receptivity theory with PSE theory for use in transition prediction. The
computational results of Malik et al. (1994) for crossflow disturbance evolution in
swept Hiemenz flow (Hall, Malik & Poll, 1984) were shown to capture the evolution of
the disturbance up to the weakly nonlinear stage of development. The computational
results of Haynes & Reed (1996) for the nonlinear evolution of stationary crossflow
disturbances agree with the experiments of Reibert et al. (1996) as the dominantly
stationary vortices reach saturation. A potential explanation of this saturation feature
of the vortices was offered by Gajjar (1996), who conjectured that the long-wavelength
crossflow disturbances are governed by the unsteady nonlinear critical-layer equations,
and proposed that such equations can lead to growth rates of the disturbance being
driven to zero; hence, the saturation of crossflow disturbances may be explained by
this critical-layer nonlinearity.

The direct numerical simulation (DNS) approach, in which the Navier–Stokes
equations are solved with no approximation within a temporal or spatial framework
(the spatial framework being more expensive, but more physically realistic), has
also been used to investigate the relationships between the multiple modes in the
swept-wing boundary-layer flow for simple geometries. Using the Falkner–Skan–
Cooke (FSC) similarity solution (Falkner & Skan 1931; Cooke 1950), Meyer &
Kleiser (1988, 1990) performed a temporal DNS of crossflow disturbance evolution
on swept wedges (the wing surface curvature was ignored). Although boundary-layer
growth is neglected and spatial periodicity is assumed with the temporal formulation,
Meyer & Kleiser (1988) captured the qualitative features of the transition process
up to the nonlinear interaction stage, and Müller, Bestek & Fasel (1993, 1996)
showed a good comparison between DNS and experimental velocity profiles in the
linear regime and studied the interaction between a stationary vortex and a single
travelling mode. Using the fringe-method, Spalart (1990) computed the evolution of
crossflow disturbances in swept Hiemenz flow. Joslin & Streett (1994) and Joslin (1995)
performed spatial DNS calculations to compute the linear and nonlinear evolution
of stationary crossflow vortices in swept-wedge flow. Similarly to the experiments,
the stationary vortex evolution was marked by a region of linear amplification,
vortex alignment approximately in the streamline direction, doubly inflectional velocity
profiles in the large-amplitude region, and the vortex roll-over phenomena.

In summary, the experimental and computational studies have shown that:
(a) The stationary vortices are initiated by surface roughness (Deyhle & Bippes

1996).
(b) These vortices are aligned within a few degrees of the streamline (Meyer &

Kleiser 1988).
(c) In low-disturbance tunnels, stationary vortices lead to vortex roll-over, inflec-

tional profiles, and dominate transition (Dagenhart et al. 1990).
(d) The inflectional velocity profiles can generate high-frequency, secondary-insta-

bility travelling modes (Kohama et al. 1991).
(e) In high-disturbance tunnels, travelling disturbances dominate transition (Bippes

et al. 1991).
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(f) PSE theory, temporal DNS, and spatial DNS capture the linear and nonlinear
evolution of stationary crossflow-vortex disturbances (Malik et al. 1994; Meyer &
Kleiser 1988; Joslin & Streett 1994).

Despite many theoretical and experimental studies and some DNS and PSE studies,
however, the current understanding of transition in a swept-wing boundary layer is still
incomplete: while much is known about the stationary-dominated crossflow transition
case, very little is still known about stationary/travelling disturbance interaction and
breakdown (Kachanov 1996). For this reason, the present study is focused on studying
the interaction of stationary and unsteady disturbances. The investigation will be
conducted using large-eddy simulation (LES), since capturing the large scales and
modelling the subgrid scales decreases significantly the cost of the numerical solution
of turbulent and transitional flow problems, compared with DNS. DNS has not
been used to study unsteady swept-wing transition because of its enormous cost (125
CRAY-2 CPU hours were required for the stationary crossflow study by Joslin &
Streett 1994). Even using LES, as will be seen later, the computational effort due
to the grid resolution requirements was extreme, to the point that, although a grid
refinement study was conducted, it was not possible to reach truly grid-invariant
solutions. It will be shown, however, that the finest grid used gives reliable results.

For a fixed stationary disturbance, simulations are conducted with small- and large-
amplitude time-dependent disturbances. The effect of random, three-dimensional, and
time-dependent disturbances on the flow breakdown, and the interaction between the
stationary vortices typical of swept-wing transition and the travelling modes generated
by the random disturbance are investigated.

In the following, the problem formulation and the numerical method used will be
presented. Then, the numerical results will be discussed. Finally, some conclusions
will be drawn.

2. Problem formulation
In large-eddy simulations, the flow variables (ui and p) are decomposed into a

large-scale (or resolved) component, denoted by an overbar, and a subgrid-scale
(SGS) component, denoted by a prime:

f = f + f′. (2.1)

The large-scale component is defined by the convolution of f(x) with a filter function
G(x′). Applying the filtering operation to the incompressible Navier–Stokes and
continuity equations

∂ui

∂t
+
∂uiuj

∂xj
= − ∂p

∂xi
+

1

Re

∂2ui

∂xj∂xj
;

∂ui

∂xi
= 0 (2.2)

(where the indices follow Einstein’s summation convention) leads to equations gov-
erning the large-scale motions:

∂ui

∂t
+
∂uiuj

∂xj
= − ∂p

∂xi
− ∂τij

∂xj
+

1

Re

∂2ui

∂xj∂xj
;

∂ui

∂xi
= 0, (2.3)

where the small, unresolved-scale contributions appear through the subgrid-scale
stresses τij = uiuj − uiuj that must be modelled.

In the present simulations, the Cartesian coordinate system shown in figure 1
is used, with x = (x, y, z) denoting the streamwise, wall-normal, and spanwise co-
ordinates respectively. The equations are non-dimensionalized by the free-stream
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Figure 1. Sketch of swept-wing (a) experimental setup and (b) coordinate systems.

edge velocity Qe,o at the computational inflow boundary, the reference length scale
δ0 = (νxc/Ue,o,c)

1/2 at the computational inflow boundary, and the kinematic viscosity
ν. The Reynolds number is then defined as Re = Qe,oδ0/ν. Note that Ue,o,c is the
chordwise edge velocity component at the computational inflow boundary. Curvature
is neglected.

The instantaneous large-scale velocity ui(x, t) and pressure p(x, t) are decomposed
into base, Ubi(x) and Pb(x), and disturbance, ũi(x, t) and p̃(x, t), components as

ui(x, t) = Ubi(x) + ũi(x, t) and p(x, t) = Pb(x) + p̃(x, t). (2.4)

The base flow Ubi(x), Pb(x) satisfies the steady-state Navier–Stokes and continuity
equations. For three-dimensional infinite swept-wedge flows, it is given by the FSC
similarity solutions, given a specified pressure gradient, sweep angle φ∞, and free-
stream velocity Q∞.

By substituting equations (2.4) into (2.3) and subtracting the laminar base-flow
equations, the filtered disturbance equations result:

∂ũi

∂t
+
∂ũiũj

∂xj
+
∂ũiUbj

∂xj
+
∂Ubiũj

∂xj
= − ∂p̃

∂xi
− ∂τij

∂xj
+

1

Re

∂2ũi

∂xj∂xj
;

∂ũi

∂xi
= 0. (2.5)

In the present simulation, the subgrid-scale stresses τij will be modelled by the
localized dynamic eddy-viscosity model proposed by Piomelli & Liu (1995). The
single coefficient is computed at each point and time step, based on the energy
content of the smallest resolved scales; this model has been used successfully in the
simulation of turbulent, relaminarizing and transitional flows (Piomelli & Liu 1995;
Huai, Joslin & Piomelli 1997), and is expected to be well suited to the study of the
flow in question.

3. Solution methodology
The filtered Navier–Stokes equations were solved using the fractional-time-step

method (Chorin 1968). As in the study by Joslin, Streett & Chang (1993), fourth-
order finite-difference and fourth-order compact-difference schemes were used in the
streamwise direction x for the pressure and the momentum equations, respectively.
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Chebychev series were used in the wall-normal direction y, and Fourier series in
the spanwise direction z. The implicit Crank–Nicolson time-advancement was used
for the wall-normal diffusion terms and a three-stage Runge–Kutta scheme for the
remaining terms (Williamson 1980). The time-step was held constant and was based
on the CFL limitations of the Runge–Kutta scheme. A sharp cutoff filter was used in
the wall-normal and spanwise directions whereas a box filter in real space was used
in the streamwise direction.

The buffer-domain technique (Street & Macaraeg 1989) was used to treat the
outflow conditions. A small non-physical buffer region is appended to the physical
region of interest; in this buffer region the characteristics of the governing equations
are modified to prevent reflections at the outflow boundary. The modification to
the original buffer domain technique developed by Liu & Liu (1993) to reduce the
required length of the buffer region was used in the present study as well.

Unphysical wave reflections resulting from physical disturbances in the flow field
encountering a computational boundary can occur when boundary conditions are
implemented in spatial simulations. Pruett et al. (1995) showed that all higher-order
finite-difference schemes reflect some energy at the outflow, even when the boundary
conditions applied are perfectly non-reflecting. Energy, in particular, is totally reflected
for the sawtooth parasite mode, which has a wavelength λ = 2∆x and is generated
by the even-odd decoupling of the central-difference approximations. The reflected
waves propagate upstream, and, upon encountering the Dirichlet inflow boundary,
reflect again and travel downstream as spurious disturbances. This phenomenon was
also observed during the present study in preliminary simulations. Rai & Moin
(1991) used upwind-biased differences for the convection terms to damp the higher
wavenumber content. Pruett et al. (1995), on the other hand, applied a low-pass, sixth-
order compact-difference filter to the solution, which is equivalent to the addition
of high-order numerical dissipation. Here, a fourth-order compact-difference filter
(Lele 1992) was employed in the streamwise direction to remain consistent with the
derivative stencil in that direction. At the downstream boundary, an explicit fourth-
order filtering scheme was used to eliminate the highest wavenumber components.
This approach completely filters the sawtooth wavenumber component (k = π), all
other high wavenumber modes being damped to a lesser extent. The filter has no
effect on low-wavenumber modes (see Huai 1996). Filtering every 10 time steps was
sufficient in the present simulations.

Similarly to the simulations of subharmonic breakdown by Huai et al. (1997), two
overlapping computational boxes (figure 2) were used to resolve the simulation in an
affordable manner; forcing in the first box was accomplished by steady and unsteady
suction and blowing through the wall, and the time-dependent solution near the end
of the first box was used as the inflow in the second computational box.

In the first box, small-amplitude disturbances were introduced into the flow by
imposing wall-normal velocity oscillations through a suction-and-blowing strip. As
shown by Joslin & Streett (1994), stationary crossflow vortices can be generated
with steady suction and blowing, simulating periodic surface roughness (Kachanov &
Tararykin 1990). In the present study, the dominant stationary mode was explicitly
introduced by applying steady suction and blowing, whereas travelling crossflow
vortices were introduced through an unsteady random-noise component:

v(x, z, t) = A0f(x)g(z) + Atf(x)R(z, t), (3.1)

where A0 and At are the amplitudes of steady and time-dependent components of the
wall-normal disturbance velocity. The streamwise and spanwise suction and blowing
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modulation functions f(x) and g(z) are shown in figure 3. The unsteady components
were generated using a random function R(z, t) at each time step. The zero-frequency
and zero-wavenumber modes of the random function were eliminated to prevent the
travelling-wave component from contaminating the stationary-wave component.

After an initial transient, a time sequence of (y, z)-planes of data was stored near
the end of the physical region of the computational box for two periods of the
fundamental disturbance. This information was then used as an inflow boundary
condition for the second computational box. Since the two periods were not sufficient
to obtain stationary results in the second box, the inflow data were recycled. Since the
time sequence of data may not be exactly time-periodic, a conventional windowing
technique was used to prevent spurious high-frequency unsteady waves from being
introduced at the inflow of the second box. Chebychev interpolation in the wall-
normal direction and Fourier interpolation in the spanwise direction were used to
obtain the inflow data on the finer grid of the second box. Huai (1996) and Huai
et al. (1997) showed that the periodicity in the inflow data is lost within a few grid
points of the inflow plane, and that this approach is an effective and inexpensive way
to simulate boundary-layer transition.
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The numerical scheme and SGS models were first validated by the simulation of
the evolution of linear and nonlinear stationary crossflow disturbances on a swept
wedge (Huai, Joslin & Piomelli 1994) and of boundary-layer transition on a flat plate
(Huai 1996; Huai et al. 1997). For the stationary crossflow evolution, the LES results
were in excellent agreement with the DNS results of Joslin & Streett (1994); although
this comparison allowed us to validate the numerical scheme, the SGS eddy viscosity
was very small at all locations (the flow was only undergoing the initial stages
of transition). For the flat-plate transition problem, the LES results were in good
agreement with the experimental data of Kachanov & Levchenko (1994) approaching
transition and with the DNS results of Spalart (1988) in the turbulent region, where
the SGS contributions were more significant.

4. Results and discussion
4.1. Simulation parameters

The parameters for the present simulations were chosen to complement the DFVLR
swept flat-plate (wedge) experiment carried out by Müller & Bippes (1988) and the
swept-wing experiments of Dagenhart (1992). Although the models were different for
these experiments, both had accelerating flows and a nearly constant pressure gradient
in the region of interest for the present LES study. The numeric-specific parameters
were based on the DNS studies of Joslin & Streett (1994) and Joslin (1995). Based
on a model sweep angle of 45◦ and the experimental pressure distribution by Müller
& Bippes (1988), a linear pressure relation can be used to model the experiment:

cp(xc) = 0.941− 0.845xc. (4.1)

As shown in figure 4, the linear fit is an accurate representation of the experimental
pressure coefficient over most of the region of interest. The pressure was then used
to determine solutions of the FSC base-flow equations. The computational inflow
was positioned at xc = 0.2. The chord length corresponded to 1.83 m and the free-
stream velocity was Q∞ = 21.8 m s−1, resulting in a chord Reynolds number of
Rec = 2.73× 106; the Reynolds number at the inflow was Re = 998. Joslin & Streett
(1994) found that with these parameters, the dominant stationary vortex mode had a
spanwise wavelength of λz = 36δ0. This dominant wavelength was used to determine
the spanwise domain length and the forcing wavelength.

Two simulations, denoted by low-t and high-t, were carried out covering the
chordwise regions of 0.2 < xc < 0.54 and 0.2 < xc < 0.5 respectively. They required
about 100 and 90 Cray C-90 hours respectively. Tables 1(a) and 1(b) show the
relevant computational parameters used for the simulations. Note that the late stages
of transition are captured in box 2 only. In the tables, the domain lengths and number
of grid points have the convention of streamwise × wall-normal × spanwise directions
and the domain lengths are non-dimensionalized by δ0. To obtain a measure of the
grid independence, a finer resolution was also used for box 2 of the high-t simulation
(the fine-mesh calculation is denoted by high-tf). Details of high-tf are shown in
table 1(c); the number of grid points in x was doubled and the domain length in z
was decreased by one-third (since the high-t calculation had shown little energy in
the modes with wavelength larger than Lz/3) compared with the high-t simulation.
The high-tf simulation required 175 Cray C-90 hours.

In all simulations the amplitude of the steady suction and blowing (stationary
disturbance) was fixed at A0 = 10−4, and the amplitude of unsteady suction and
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Figure 4. Experimental and analytical pressure distribution for the swept-wedge flow
(�, Müller & Bippes 1988).

Chordwise length Domain length Grid

(a) Box 1 0.20 < xc < 0.36 358× 50× 108 326× 49× 33
Box 2 0.36 < xc < 0.54 386× 50× 108 461× 61× 49

(b) Box 1 0.20 < xc < 0.32 272× 50× 108 266× 49× 33
Box 2 0.32 < xc < 0.5 386× 50× 108 461× 61× 49

(c) Box 1 0.20 < xc < 0.32 272× 50× 36 266× 49× 33
Box 2 0.32 < xc < 0.5 386× 50× 36 921× 61× 49

Table 1. Computational parameters for (a) low-t, (b) high-t and (c) high-tf cases.

blowing (random time-dependent disturbances) was set to At = 10−4 for low-t and
At = 10−2 for high-t and high-tf. By choosing an order-of-magnitude difference in
the unsteady components, stationary-vortex-dominated transition can be compared
with transition resulting from travelling vortices.

Recall that the outflow boundary treatment involved a portion of the computa-
tional domain, the buffer region. For all simulations, a fixed chordwise length 107δ0

(equivalent to a chord length ∆xc = 0.05) was used for the buffer regions.
Figure 1(b) showed the various coordinate systems used for the swept-wing problem.

Although the equations are solved in the body-oriented coordinate system (x, y, z) or
(xc, yc, zc), most of the results are presented in the flow-oriented coordinate system
(xs, ys, zs), which denotes tangent, wall-normal, and perpendicular directions to the
local external streamline.

4.2. Local characteristics of the flow field

Streamwise mean and disturbance velocities for the low-t simulation are shown in
figures 5–7. Figures 5 and 6 show that velocity contours of the mean and disturbance
components, respectively, in spanwise/wall-normal (y, z) planes are parallel to the
leading edge of the swept wedge. At xc = 0.3, the amplitude of the crossflow vortices
are still relatively small, and the mean flow is unaffected by the disturbances. Near
xc = 0.35, the presence of the crossflow vortices becomes detectable in the mean
flow. After xc = 0.40, the results in figure 5 indicate that the mean flow becomes
significantly altered by the crossflow disturbances. The vortex roll-over (or half-
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Figure 5. Contours of the time-averaged mean streamwise velocity Us for the low-t case.
(a) xc = 0.3; (b) xc = 0.35; (c) xc = 0.4; (d) xc = 0.42; (e) xc = 0.45; ( f ) xc = 0.5. The vertical scale
is amplified for clarity.

mushroom structure) is clearly visible in both figures 5 and 6 between xc = 0.40 and
xc = 0.45. Figure 6 shows weak secondary crossflow vortices relatively close to the
wall at z ≈ 10, 46 and 82, with the same wavelength as the dominant stationary-
vortex component. Malik et al. (1994) also observed secondary instabilities in their
numerical study. Figure 7 shows the streamwise mean velocity profiles as a function
of the distance from the wall at various streamwise locations and at four spanwise
locations. These results indicate that doubly inflectional velocity profiles occur in the
same region as the half-mushroom structure.

Figures 8 to 10 show streamwise mean and disturbance velocities for the high-t
case. Up to xc ' 0.35 the evolutionary features of the crossflow disturbance for the
low-t and high-t are very similar. Beyond xc = 0.35, however, the distinct roll-over
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Figure 6. Contours of the time-averaged streamwise disturbance velocity ũs for the low-t case.
(a) xc = 0.3; (b) xc = 0.35; (c) xc = 0.4; (d ) xc = 0.42; (e) xc = 0.45; ( f ) xc = 0.5. The vertical scale
is amplified for clarity.

structure, secondary vortices, and strong doubly inflectional velocity profiles described
above are not observed in the high-t case. It appears, in this case, that the high-speed
fluid remains near the wall and the low-speed fluid diffuses just prior to the roll-over
event found in low-t. Correspondingly, the velocity profiles (figure 10) in the high-t
case exhibit only marginal inflection points.

The present results for the low-t case matched the previous stationary-crossflow-
dominated transition studies of Dagenhart (1992), Meyer & Kleiser (1988), Malik
et al. (1994), and Joslin & Streett (1994). The high-t results, which involve both
stationary and travelling crossflow vortices, however, are substantially different. They
suggest that the strength of the stationary vortex is linked to vortex roll-over; with
travelling disturbances competing for energy, the stationary modes are robbed of the
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Figure 7. Wall-normal profiles of the time-averaged streamwise mean velocity Us for low-t.
(a) xc = 0.35; (b) xc = 0.4; (c) xc = 0.45; (d ) xc = 0.5; (e) xc = 0.54. �, z = 0; 4, z = 9; �, z = 18;
×, z = 27.

necessary energy, preventing the development of doubly inflectional profiles, as will
be further discussed in §4.4.

4.3. Global characteristics of the flow field

Contours of mean wall shear are shown in figure 11 (two computational domains
are shown side by side in each part). The alternating high- and low-shear regions
associated with the crossflow vortices are evident. As in the experiment of Dagenhart
(1992), no adjustment of vortex spacing is observed, in contrast to the experimental
results of Arnal & Juillen (1987); however, as the vortices evolve and spread with
chordwise distance, merging of the vortices occurs due to this natural spreading, as
discussed by Joslin & Streett (1994).

The transition location can be estimated in figure 11 as the place where the distinct
streak patterns become blurred or disappear. For low-t and high-t they are at
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xc ' 0.45 and 0.42 respectively. Transition occurs earlier in the higher time-dependent
disturbance (high-t) case. This result is consistent with the experimental results of
Müller & Bippes (1988), who suggested that the travelling waves play the most
important role in determining the onset of transition, while large amplitudes of the
stationary vortices do not seem to advance transition. Another interesting observation
is that in the low-t case the change of the streak patterns in the downstream region
is milder and remnants of the stationary vortices extend deep into the transition and
turbulent regions, as discussed above.

Other indications of boundary-layer transition can be assessed by computing the
displacement thickness δ∗s , momentum thickness θs, shape factor Hs and skin-friction
coefficient Cf,s associated with the streamwise mean velocity Us. These global quanti-
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ties are defined in the streamline coordinate system as

δ∗s =

∫ ymax

0

(
1− Us

Ue,s

)
dy, θs =

∫ ymax

0

Us

Ue,s

(
1− Us

Ue,s

)
dy, (4.2)

Hs =
δ∗s
θs
, Cf,s =

2τw,s
ρU2

e,s

, (4.3)

where Ue,s is the streamwise boundary-layer edge velocity and capital letters denote
time-averaged quantities.

Figure 12 shows the chordwise variation of the skin-friction coefficient and shape
factor for the low-t, high-t and high-tf cases. Consistent with the velocity contours
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(figures 5 and 8), the initial amplification of the disturbances does not alter the mean
laminar flow state. As the amplitude of the crossflow disturbances becomes finite,
the mean flow becomes distorted and the nonlinear transition process commences.
The skin friction coefficient Cf increases rapidly and the shape factor H decreases
from laminar to transitional to turbulent values. Finally, the friction and shape-factor
values indicate that a nearly turbulent state is being approached by the end of the
simulations.

A comparison between high-t and high-tf results indicates that the high-t
grid is insufficiently resolved. Refining the grid results in an earlier breakdown of the
laminar flow, as evidenced by the fact that the skin-friction coefficient begins to rise at
xc = 0.40 and 0.42 in the finer and coarser calculations, respectively. Computational
resources, however, were quickly exhausted and no further grid refinement could
be run. Although grid-invariance of the results was not achieved, and quantitative
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differences can be observed between the simulations high-t (coarser) and high-tf,
the qualitative features obtained are fairly grid-independent, as will be shown later.

Owing to both the sweep angle of the model and the pressure gradient, the
streamlines and wall shear stress change direction with chordwise location. As shown
by Meyer & Kleiser (1988) and Joslin & Streett (1994), the crossflow vortices are
aligned within a few degrees of the external streamwise direction. The angles obtained
by measuring the streak patterns in the present study are shown in figure 13. The
les results show a deviation of ε = 4◦ from the streamline direction (denoted by
β), which is within the range of previous results, ε = 3◦–5◦ (Nitschke-Kowsky &
Bippes 1988). The wall shear stress initially follows the laminar base-state direction,
as expected; however, as transition occurs, the strength of the crossflow disturbances
dominates the near-wall flow, and the shear direction switches from the laminar state
to the direction of the crossflow vortex disturbance. This realignment persists into the
turbulent boundary layer.

The mean velocity profiles in wall units near the end of the second box of the
various simulations are plotted in figure 14, together with the linear profile U+ = y+

and the logarithmic law U+ = ln y+/0.41 + 5.2. A long logarithmic layer with the
slope of 1/0.41 is evident, but is clearly shifted upward from the two-dimensional
log-law. This indicates a thickening of the near-wall layer, and may be due either
to physical causes or to insufficient grid resolution. A significant decrease of the
log-layer intercept is in fact obtained by refining the mesh. It should be remarked
that in the turbulent-like region of the high-tf simulation the grid size in wall units
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is ∆x+ = 23, ∆y+
min = 0.27, ∆z+ = 42, which, in the coordinate system aligned with

the wall stress gives ∆x+
s = 46 and ∆z+

s = 23. The LES of a turbulent flat-plate
boundary layer that used the same grid resolution gave mean velocity profiles in very
good agreement with the DNS results (Huai et al. 1997), with a logarithmic layer
with the correct intercept. Based on this consideration, the fact that, with the same
effective grid resolution, the three-dimensional boundary layer has a thicker near-wall
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layer seems to be due mostly to physical reasons. It can be due partly to the fact
that fully developed turbulent flow has not been achieved prior to the end of the
computational domain, but it may be also an effect of the presence of the stationary
crossflow vortices. High values of the log-layer intercept had been previously found
in other simulations involving vortex-dominated flows (Liu, Piomelli & Spalart 1996).

4.4. Spectral analysis

Next, the spanwise wavenumber spectra of the steady streamwise perturbation velocity
were calculated. Figure 15 gives the maximum amplitude of each spanwise mode with
chordwise location for low-t, high-t and high-tf, obtained from

Amax(x, kz) = max[A(x, y, kz)], y ∈ [0, ymax], (4.4)

where A(x, y, kz) is the magnitude of spanwise mode kz at point (x, y). Because the
forced dominant stationary mode has three periods over the spanwise length of the
box Lz , the wavenumber of the primary crossflow mode (denoted by kz) satisfies the
relationship kzLz/2π = 3. We denote this dominant wavelength as λ3. In the low-t
case shown in figure 15(a) the primary crossflow mode λ3 reaches an amplitude equal
to 28% of the free-stream inflow velocity prior to transition. The harmonic with
one-half the wavelength of the dominant mode, λ3/2, attains the peak magnitude of
18%, while λ3/3 reaches about 10%. It is also evident that the energy cascade appears
in the harmonics of the primary wave and not in its subharmonics. The emergence of
energy in the harmonics and not subharmonics is consistent with the experiments of
Reibert & Saric (1997). Furthermore, this cascade of energy suggests that the growth
of higher harmonics can be attributed to a fundamental secondary instability (the
crossflow mode with one-half the wavelength of the dominant mode) as discussed
by Reed (1987). Similarly to the previous experiments and DNS, saturation of the
stationary vortices is observed prior to transition. Huai (1996) found a high growth
rate of secondary instability for the travelling modes during the saturation process of
the stationary vortices. In the high-t and high-tf cases, shown in figures 15(b) and
15(c), the harmonics of the dominant mode never amplify as in the low-t case; the
primary wave only reaches an energy level of 14% of the free-stream inflow velocity.
Evidently, with higher unsteady components in the flow, the secondary modes are
not encouraged to amplify. Very little difference can be observed between the high-t
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and high-tf results, apart from an earlier growth of the λ3 mode in the coarser
computation.

The chordwise growth of several harmonics of the perturbation velocity and the
zeroth-wavenumber mode are shown in figure 16. In the low-t case, the primary
mode (λ3) grows exponentially (with an amplification rate αi ' 11 in good agreement
with the experimental results of Müller & Bippes 1988) and initially has the largest
energy content, since it is generated by the steady suction and blowing. The harmonics
λ3/2 and λ3/3 grow with amplification rates of αi ' 24 and αi ' 39, as would be
expected from direct harmonics of the primary mode. At xc = 0.39, the primary
mode starts to saturate and reaches a peak amplitude 28% at xc = 0.41; the second
harmonic saturates at approximately the same location, while the saturation of the
third harmonic occurs downstream of the first- and second-mode saturation point.
The mean velocity mode also shows the tendency to saturation when the primary
mode saturates, but it regains exponential growth as the transition zone is entered
and the unsteady modes begin to dominate the transition process. At the transition
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location xc = 0.45, all the modes have amplitudes of the same order of magnitude.
In the high-t and high-tf cases, the primary mode and the second harmonic have
the same initial growth rates as in the low-t case, but, at the transition location,
they have less energy by roughly one order of magnitude. The distortion of the mean
flow follows the growth of the second harmonic up to the saturation point. Again,
the high-t and high-tf results are in very good qualitative agreement, the main
difference being the earlier growth of λ3 observed before, while the higher harmonics
are in good quantitative agreement. In the PSE computations of Malik et al. (1994),
a travelling-mode-dominated case led to growth of temporal and spatial harmonics
of the primary mode.

Finally, the frequency spectra of the streamwise fluctuation velocity us are shown in
figure 17 for the low-t and high-t cases. When the amplitude of the travelling modes
is low, a low-frequency band centred at f ' 90 Hz begins to amplify, in agreement
with the prediction of linear stability theory and experiments (see Bippes et al. 1991).
At xc = 0.35, however, a second peak is observed in the spectrum at approximately
180 Hz, corresponding to the amplification of the harmonic of the primary travelling
wave. The travelling disturbances are dominated by the low-frequency band until
xc = 0.4, but at xc = 0.45 a high-frequency band with frequencies one order of
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magnitude higher is strongly amplified, in agreement with the findings of Kohama
et al. (1991), and the peak in the spectrum moves to the second harmonic. In the
transition and turbulent regions, the distribution of the spectrum becomes closer to
that of a turbulent flow; about four decades of the spectrum are resolved. It is not
clear from this comparison what drives the flow through the transition region to the
turbulent state; however, the present results do not contradict the proposition by
Kohama, Onodera & Egami (1996), who claimed that, in this situation, the secondary
mode drives the flow to turbulence. Figure 17(b) shows the frequency spectrum for
the high-t case. A shift of the peak low-frequency mode occurs at xc = 0.4; however,
the high-frequency band is not prominent at the transition location (xc = 0.42); the
secondary instability associated with the inflectional points is much weaker because
the stationary vortex has less energy and only marginal inflection points are observed
in the velocity profiles. The travelling modes play a more significant role in the
transition process for the high-t case.

5. Conclusions
The spatial evolution of crossflow disturbances in a swept-wedge boundary layer

was computed using the large-eddy simulation (LES) approach with the primary
goals of studying the flow physics associated with stationary and travelling crossflow
vortex interactions and evaluating the effectiveness and limits of using LES as a tool
for the prediction of boundary-layer transition in a complex three-dimensional flow.

For stationary-crossflow-dominated transition (low-t), results from the present
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simulations are consistent with the flow processes previously documented using wind-
tunnel experiments and direct numerical simulations (DNS). Initially, the disturbances
approximately align with the direction of the external streamline, forming a 4◦ differ-
ential angle with the streamline (consistent with linear theory). As the disturbances are
amplified, spanwise planes of streamwise velocity contours showed the evolution from
a wave-like structure to the vortex-roll-over or half-mushroom structure. Within this
half-mushroom structure, doubly inflectional velocity profiles are present just prior to
the onset of boundary-layer transition. The inflection points lead to amplification of
high-frequency secondary instability, followed by a rapid filling of the spectrum and
transition within a few percent chord downstream of the inflectional profiles. The
transition locations predicted from the streak patterns agreed with predictions using
the streamwise skin-friction coefficient. In this study we observed the amplification
of harmonic modes of the primary disturbance, while no energy was found in any
subharmonic modes (a recently published experiment (Reibert et al. 1996) confirms
this finding). The present use of LES has enabled the first spatial simulation of the
complete transition process from the onset of stationary crossflow disturbances and
small-amplitude travelling modes, to secondary instability, to transition to turbulence.

Previous wind-tunnel experiments and temporal DNS studied the interaction of
stationary and discrete travelling disturbances. The present high-t simulation yields
the first study of the interaction of stationary disturbances and high-amplitude random
travelling disturbances from initiation through transition to turbulence. For the higher-
amplitude travelling disturbance case (high-t), the results showed that during the
initial evolution the disturbances are also approximately aligned in the direction of
the external streamline (4◦ differential angle). The disturbances amplify, interact, and
induce boundary-layer transition. For the high-t case, the half-mushroom structure
is not observed in the simulation, the growth of energy is suppressed for the higher-
harmonic modes, and the secondary instability is not dominant. However, similarly to
the low-t case, the transition locations predicted from the streak patterns agreed with
predictions using the streamwise skin-friction coefficient. The travelling disturbances
have a stronger role in the transition process compared with low-t, where secondary
instabilities dominate.

While the gross features of the stationary-dominated flow were consistent with
previous wind-tunnel and DNS studies, the high-t and high-tf comparison indicates
that the issue of grid independence was not completely resolved. Although the quali-
tative trends and some of the quantitative predictions obtained with these simulations
match well, other quantities had not reached grid-invariance.

This work was sponsored by the NASA Langley Research Center under grant
NAG 1-1089. The computer resources were provided by the Numerical Aerodynamic
Simulation Facility. The authors thank the referees for their insightful comments.
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